Welcome to Kim Research Lab in Department of Mechanical Engineering at the University of South Alabama. We aims at developing advanced systems with a focus on Bio-Electo-Mechano-Engineering: thermal engineering, materials science, biomedical engineering, and advanced manufacturing in applications of waste heat recovery, solid-state cooling, self-powered devices, energy storage and transfer, soft electronics, human rehabilitation, and many others.

 

Panel 1

Research

Energy Conversion Materials and Systems

  • Understanding transport phenomenon of electrons and phonons
  • Tuning physical properties for high energy conversion performance and improving mechanical properties for thermal stability
  • Studying device-level characteristics: various design factors, thermal/electric contacts, physical/chemical bondings, thermal stability, compatibility, system reliability
  • Bridging the gap between materials and device technologies

System Integration & Manufacturing

  • Designing thermal energy storage systems, passive cooling systems, and biocompatible power management systems
  • Printing technology

Instrumentation

  • Thermal and electric characterization
  • Device assembly for thermoelectric modules
  • Power and efficiency measurement
  • Thermal stability test of materials and devices

Soft Electronics

  • Wearable bioelectronics for human health monitoring
  • Human-Machine Interfaces via smart machine learning
  • Multiscale sensing and disease diagnostics

 

Panel 2

Team

 

Principal Investigator

hskim
Hee Seok Kim

Dr. Kim is an assistant professor in the Department of Mechanical Engineering at the University of South Alabama. He was formerly a Postdoctoral Fellow in the Department of Physics and Texas Center for Superconductivity at the University of Houston (mentored by Prof. Zhifeng Ren). His research interests are in advanced energy conversion and storage systems from materials to devices. He received his B.S. and M.S. in School of Mechanical Engineering from Sungkyunkwan University in Korea (advised by Prof. Ja Choon Koo), followed by Ph.D. in the Department of Mechanical Engineering at the University of Washington (advised by Prof. Minoru Taya).

Email  | CV  |  Google Scholar  |  ResearchGate

Undergraduate Students

hskim
Nicholas Hacker
hskim
Nazim Uddin
hskim
Join Us

Prior Graduate Students

Eilis_Doran_crop
Eilis Doran

Prior Undergraduate Research Students

hskim
Ziyi Jiang
hskim
Davis Duncan
Logan_Boyd_2017_1
Logan Boyd

 

Panel 3

Publications

Peer-reviewed Publications

  1. “Breathable, large-area epidermal electronic systems for recording electromyographic activity during operant conditioning of H-reflex,
    Y. Kwon, J. Norton, A. Cutrone, H. Lim, S. Kwon, J. Choi, H. S. Kim, Y. Jang, J. Wolpaw, and W.-H. Yeo,
    Biosensors and Bioelectronics
    112404, 2020.
  2. Fully integrated, stretchable, wireless skin-conformal bioelectronics for continuous stress monitoring in daily life,
    H. Kim, Y. S. Kim, M. Mahmood, S. Kwon, N. Zavanelli, H. S. Kim, Y. S. Rim, F. Epps, and W.-H. Yeo,
    Advanced Science
    2000810, 2020.
  3. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment,
    H.-R Lim, H. S. Kim, R. Qazi, Y.-T Kwon, J.-W Jeong, and W.-H. Yeo,
    Advanced Materials
    1901924, 2019.
  4. A rapid method to extract Seebeck coefficient under a large temperature difference,
    Q. Zhu, H. S. Kim, and Z. F. Ren,
    Review of Scientific Instruments
    88(9):094902, 2017.
  5. Bridge between materials and devices of thermoelectric power generators,
    H. S. Kim, W. Liu, and Z. F. Ren,
    Energy and Environmental Science
    10:69-85, 2017.
  6. Achieving high power factor and output power density in p-type half-Heuslers Nb1-xTixFeSb,
    R. He, D. Kraemer, J. Mao, L. Zeng, Q. Jie, Y. Lan, C. Li, J. Shuai, H. S. Kim, Y. Liu, D. Broido, C.-W. Chu, G. Chen, and Z. F. Ren,
    PNAS
     113(48):13576-13581, 2016.
  7. Transport and mechanical properties of double filled p-type skutterudites La0.68Ce0.22Fe4-xCoxSb12,
    T. Dahal, H. S. Kim, S. Gahlawat, Q. Jie, K. Dahal, W. Liu, Y. Lan, K. White, and Z. F. Ren,
    Acta Materialia
    117:13-27, 2016.
  8. Thermoelectric Properties of Zintl Compound Ca1-xNaxMg2Bi1.98,
    J. Shuai, H. S. Kim, Z. Liu, R. He, J. Sui, and Z. F. Ren,
    Applied Physics Letters 108:183901, 2016.
  9. Enhancement of thermoelectric performance of phase pure Zintl compounds Ca1-xYbxZn2Sb2, Ca1-xEuxZn2Sb2, and Eu1-xYbxZn2Sb2 by mechanical alloying and hot pressing,
    J. Shuai, Y. Wang, Z. Liu, H. S. Kim, J. Mao, J. Sui, and Z. F. Ren,
    Nano Energy
     25:136-144, 2016.
  10. Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators,
    H. S. Kim, T. Wang, W. Liu, and Z. F. Ren,
    Advanced Functional Materials
     26(21):3678-3686, 2016.
  11. High thermoelectric performance of n-type PbTe1-ySy due to deep lying states induced by Indium doping and spinodal decomposition,
    Q. Zhang, E. K. Chere, Y. Wang, H. S. Kim, R. He, F. Cao, K. Dahal, D. Broido, G. Chen, and Z. F. Ren,
    Nano Energy 22:572-582, 2016.
  12. Thermoelectric properties of Bi-based Zintl compounds Ca1-xYbxMg2Bi2,
    J. Shuai, Z. Liu, H. S. Kim, Y. Wang, J. Mao, R. He, J. Sui, and Z. F. Ren,
    Journal of Materials Chemistry A 4(11):4312-4320, 2016.
  13. New insight into the material parameter B to understand the enhanced thermoelectric performance of Mg2+δSn1-x-yGexSby,
    W. Liu, J. Zhou, Q. Jie, Y. Li, H. S. Kim, J. Bao, G. Chen and Z. F. Ren,
    Energy and Environmental Science
     9:530-539, 2016.
  14. Thermoelectric properties of materials near the band crossing line in Mg2Sn-Mg2Ge-Mg2Si system,
    J. Mao, H. S. Kim, S. Jing, Z. Liu, U. Saparamadu, R. He, F. Tian, W. Liu, and Z. F. Ren,
    Acta Materialia
     103:633-642, 2016.
  15. Importance of high power factor in thermoelectric materials for power generation application: a perspective,
    W. Liu§, H. S. Kim§, Q. Jie, and Z. F. Ren,  §Equal contribution
    Scripta materialia
     111:3-9, 2016.
  16. Efficiency and output power of thermoelectric module by taking into account corrected Joule and Thomson heat,
    H. S. Kim, W. Liu, and Z. F. Ren,
    Journal of Applied Physics
     118(11):115103, 2015.
  17. High thermoelectric power factor in Cu-Ni alloy by potential barrier scattering of twin boundaries,
    J. Mao, Y. Wang, H. S. Kim, Z. Liu, U. Saparamadu, F. Tian, K. Dahal, J. Sun, S. Chen, W. Liu, and Z. F. Ren,
    Nano Energy 17:279-289, 2015.
  18. Relationship between thermoelectric figure of merit and energy conversion efficiency,
    H. S. Kim, W. Liu, G. Chen, C.-W. Chu, and Z. F. Ren,
    PNAS
     112(27):8205-8210, 2015.
  19. Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxS2,
    J. Shuai, Y. Wang, H. S. Kim, Z. Liu, J. Sun, S. Chen, J. Sui, and Z. F. Ren,
    Acta Materialia
     93:187-193, 2015.
  20. Current progress and future challenges in thermoelectric power generation: From materials to devices,
    W. Liu, Q. Jie, H. S. Kim, and Z. F. Ren,
    Acta Materialia
     87:357-376, 2015.
  21. n-type thermoelectric material Mg2Sn0.75Ge0.25 for high power generation,
    W. Liu, H. S. Kim, S. Chen, Q. Jie, B. Lv, M. Yao, Z. Ren, C. P. Opeil, S. Wilson, C.-W. Chu, and Z. F. Ren,
    PNAS
     112(11):3269-3274, 2015.
  22. Study on thermoelectric performance by Na doping in nanostructured Mg1-xNaxAg0.97Sb0.99,
    J. Shuai, H. S. Kim, Y. Lan, S. Chen, Y. Liu, H. Zhao, J. Sui, and Z. F. Ren,
    Nano Energy 11:640-646, 2015.
  23. Investigating the thermoelectric properties of p-type half-Heusler Hfx(ZrTi)1-xCoSb0.8Sn0.2 by reducing Hf concentration for power generation,
    R. He, H. S. Kim, Y. Lan, D. Wang, S. Chen, and Z. F. Ren,
    RSC Advances
     4(110):64711-64716, 2014.
  24. Design of linear shaped thermoelectric generator and self-integration using shape memory alloy,
    H. S. Kim, T. Itoh, T. Iida, M. Taya, and K. Kikuchi,
    Materials Science Engineering: B
    183:61-68, 2014.
  25. Design of segmented thermoelectric generator based on cost-effective and light-weight thermoelectric alloys,
    H. S. Kim, K. Kikuchi, T. Itoh, T. Iida, and M. Taya,
    Materials Science Engineering: B
    185:45-52, 2014.
  26. Application of discrete Hamilton’s equation for parallel processing of impact problems,
    J. C. Koo, H. S. Kim, J. B. Choi, and Y. J. Kim,
    Key Engineering Materials
     298:716, 2005.

Continue reading “Publications”